下载APP
关闭
讲堂
客户端下载
兑换中心
企业版
渠道合作
推荐作者

15 | 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?

2019-05-29 徐文浩
深入浅出计算机组成原理
进入课程

讲述:徐文浩

时长10:47大小9.88M

在我们日常的程序开发中,不只会用到整数。更多情况下,我们用到的都是实数。比如,我们开发一个电商 App,商品的价格常常会是 9 块 9;再比如,现在流行的深度学习算法,对应的机器学习里的模型里的各个权重也都是 1.23 这样的数。可以说,在实际的应用过程中,这些有零有整的实数,是和整数同样常用的数据类型,我们也需要考虑到。

浮点数的不精确性

那么,我们能不能用二进制表示所有的实数,然后在二进制下计算它的加减乘除呢?先不着急,我们从一个有意思的小案例来看。

你可以在 Linux 下打开 Python 的命令行 Console,也可以在 Chrome 浏览器里面通过开发者工具,打开浏览器里的 Console,在里面输入“0.3 + 0.6”,然后看看你会得到一个什么样的结果。

>>> 0.3 + 0.6
0.8999999999999999
复制代码

不知道你有没有大吃一惊,这么简单的一个加法,无论是在 Python 还是在 JavaScript 里面,算出来的结果居然不是准确的 0.9,而是 0.8999999999999999 这么个结果。这是为什么呢?

在回答为什么之前,我们先来想一个更抽象的问题。通过前面的这么多讲,你应该知道我们现在用的计算机通常用 16/32 个比特(bit)来表示一个数。那我问你,我们用 32 个比特,能够表示所有实数吗?

答案很显然是不能。32 个比特,只能表示 2 的 32 次方个不同的数,差不多是 40 亿个。如果表示的数要超过这个数,就会有两个不同的数的二进制表示是一样的。那计算机可就会一筹莫展,不知道这个数到底是多少。

40 亿个数看似已经很多了,但是比起无限多的实数集合却只是沧海一粟。所以,这个时候,计算机的设计者们,就要面临一个问题了:我到底应该让这 40 亿个数映射到实数集合上的哪些数,在实际应用中才能最划得来呢?

定点数的表示

有一个很直观的想法,就是我们用 4 个比特来表示 0~9 的整数,那么 32 个比特就可以表示 8 个这样的整数。然后我们把最右边的 2 个 0~9 的整数,当成小数部分;把左边 6 个 0~9 的整数,当成整数部分。这样,我们就可以用 32 个比特,来表示从 0 到 999999.99 这样 1 亿个实数了。

这种用二进制来表示十进制的编码方式,叫作BCD 编码(Binary-Coded Decimal)。其实它的运用非常广泛,最常用的是在超市、银行这样需要用小数记录金额的情况里。在超市里面,我们的小数最多也就到分。这样的表示方式,比较直观清楚,也满足了小数部分的计算。

不过,这样的表示方式也有几个缺点。

第一,这样的表示方式有点“浪费”。本来 32 个比特我们可以表示 40 亿个不同的数,但是在 BCD 编码下,只能表示 1 亿个数,如果我们要精确到分的话,那么能够表示的最大金额也就是到 100 万。如果我们的货币单位是人民币或者美元还好,如果我们的货币单位变成了津巴布韦币,这个数量就不太够用了。

第二,这样的表示方式没办法同时表示很大的数字和很小的数字。我们在写程序的时候,实数的用途可能是多种多样的。有时候我们想要表示商品的金额,关心的是 9.99 这样小的数字;有时候,我们又要进行物理学的运算,需要表示光速,也就是 3×108 这样很大的数字。那么,我们有没有一个办法,既能够表示很小的数,又能表示很大的数呢?

浮点数的表示

答案当然是有的,就是你可能经常听说过的浮点数(Floating Point),也就是float 类型

我们先来想一想。如果我们想在一张便签纸上,用一行来写一个十进制数,能够写下多大范围的数?因为我们要让人能够看清楚,所以字最小也有一个限制。你会发现一个和上面我们用 BCD 编码表示数一样的问题,就是纸张的宽度限制了我们能够表示的数的大小。如果宽度只放得下 8 个数字,那么我们还是只能写下最大到 99999999 这样的数字。

有限宽度的便签,只能写下有限大小的数字

其实,这里的纸张宽度,就和我们 32 个比特一样,是在空间层面的限制。那么,在现实生活中,我们是怎么表示一个很大的数的呢?比如说,我们想要在一本科普书里,写一下宇宙内原子的数量,莫非是用一页纸,用好多行写下很多个 0 么?

当然不是了,我们会用科学计数法来表示这个数字。宇宙内的原子的数量,大概在 10 的 82 次方左右,我们就用 1.0×1082 这样的形式来表示这个数值,不需要写下 82 个 0。

在计算机里,我们也可以用一样的办法,用科学计数法来表示实数。浮点数的科学计数法的表示,有一个IEEE的标准,它定义了两个基本的格式。一个是用 32 比特表示单精度的浮点数,也就是我们常常说的 float 或者 float32 类型。另外一个是用 64 比特表示双精度的浮点数,也就是我们平时说的 double 或者 float64 类型。

双精度类型和单精度类型差不多,这里,我们来看单精度类型,双精度你自然也就明白了。

单精度的 32 个比特可以分成三部分。

第一部分是一个符号位,用来表示是正数还是负数。我们一般用s来表示。在浮点数里,我们不像正数分符号数还是无符号数,所有的浮点数都是有符号的。

接下来是一个 8 个比特组成的指数位。我们一般用e来表示。8 个比特能够表示的整数空间,就是 0~255。我们在这里用 1~254 映射到 -126~127 这 254 个有正有负的数上。因为我们的浮点数,不仅仅想要表示很大的数,还希望能够表示很小的数,所以指数位也会有负数。

你发现没,我们没有用到 0 和 255。没错,这里的 0(也就是 8 个比特全部为 0) 和 255 (也就是 8 个比特全部为 1)另有它用,我们等一下再讲。

最后,是一个 23 个比特组成的有效数位。我们用f来表示。综合科学计数法,我们的浮点数就可以表示成下面这样:

(1)s×1.f×2e

你会发现,这里的浮点数,没有办法表示 0。的确,要表示 0 和一些特殊的数,我们就要用上在 e 里面留下的 0 和 255 这两个表示,这两个表示其实是两个标记位。在 e 为 0 且 f 为 0 的时候,我们就把这个浮点数认为是 0。至于其它的 e 是 0 或者 255 的特殊情况,你可以看下面这个表格,分别可以表示出无穷大、无穷小、NAN 以及一个特殊的不规范数。

我们可以以 0.5 为例子。0.5 的符号为 s 应该是 0,f 应该是 0,而 e 应该是 -1,也就是

0.5=(1)0×1.0×21=0.5,对应的浮点数表示,就是 32 个比特。

s=0e=21,需要注意,e 表示从 -126 到 127 个,-1 是其中的第 126 个数,这里的 e 如果用整数表示,就是 26+25+24+23+22+21=1261.f=1.0

在这样的浮点数表示下,不考虑符号的话,浮点数能够表示的最小的数和最大的数,差不多是 1.17×10383.40×1038。比前面的 BCD 编码能够表示的范围大多了。

总结延伸

你会看到,在这样的表示方式下,浮点数能够表示的数据范围一下子大了很多。正是因为这个数对应的小数点的位置是“浮动”的,它才被称为浮点数。随着指数位 e 的值的不同,小数点的位置也在变动。对应的,前面的 BCD 编码的实数,就是小数点固定在某一位的方式,我们也就把它称为定点数

回到我们最开头,为什么我们用 0.3 + 0.6 不能得到 0.9 呢?这是因为,浮点数没有办法精确表示 0.3、0.6 和 0.9。事实上,我们拿出 0.1~0.9 这 9 个数,其中只有 0.5 能够被精确地表示成二进制的浮点数,也就是 s = 0、e = -1、f = 0 这样的情况。

而 0.3、0.6 乃至我们希望的 0.9,都只是一个近似的表达。这个也为我们带来了一个挑战,就是浮点数无论是表示还是计算其实都是近似计算。那么,在使用过程中,我们该怎么来使用浮点数,以及使用浮点数会遇到些什么问题呢?下一讲,我会用更多的实际代码案例,来带你看看浮点数计算中的各种“坑”。

推荐阅读

如果对浮点数的表示还不是很清楚,你可以仔细阅读一下《计算机组成与设计:硬件 / 软件接口》的 3.5.1 节。

课后思考

对于 BCD 编码的定点数,如果我们用 7 个比特来表示连续两位十进制数,也就是 00~99,是不是可以让 32 比特表示更大一点的数据范围?如果我们还需要表示负数,那么一个 32 比特的 BCD 编码,可以表示的数据范围是多大?

欢迎你在留言区写下你的思考和疑问,和大家一起探讨。你也可以把今天的文章分享给你朋友,和他一起学习和进步。

© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
上一篇
14 | 乘法器:如何像搭乐高一样搭电路(下)?
下一篇
16 | 浮点数和定点数(下):深入理解浮点数到底有什么用?
 写留言

精选留言(16)

  • 小崔
    2019-05-29
    6
    对于0.5,按照老师的说法,可以用s = 0、e = -1、f = 0来表示。
    但是对照表格,似乎s = 0、e = 0、f = 5也可以表示?请解惑

    作者回复: s = 0, e = 0 的时候,无论 f 是多少,都是表示浮点数 0
    f = 5,底数是1.5 而不是 0.5

  • 陆离
    2019-05-29
    2
    如果觉得没有理解老师讲的可以参考阮一峰的一篇文章
    http://www.ruanyifeng.com/blog/2010/06/ieee_floating-point_representation.html
    展开

    作者回复: 👍

    其实这一讲还有下篇,具体s, e, f怎么计算大家可以看一下周五的下篇,以及里面给的交互演示网页。

  • 龙猫
    2019-05-30
    1
    0.3无法被精确表达:
    1、首先想到会使用这种情况:s=0,e=0,f=11
    但却触发了这个特殊规则:当s和e都为0,f不为0时,表达的是0.f
    但是,0.f的时候,无论f怎么取值,都无法精确表达0.3。因为0.3的精确二进制表达式1.1
    展开
  • 范宁
    2019-05-29
    1
    老师可以讲一下计算机怎么识别规格化浮点数和非规格化浮点数吗
    展开
  • Geek
    2019-05-29
    1
    7个比特的话,99的二进制是1100011,32位里有四个7,那就是99999999,还剩4个比特,正好用来表示一个9,所以最大应该是9999999.99,如果表示负数,第一位是符号位,所以之前剩余的四位,最大是(正)0111和(负)1111,也即是±7,所以结果是-7999999.99-7999999.99
  • 愤怒的虾干
    2019-05-29
    1
    老师,我在java里验证了下,譬如1.9999999f,小数点后的位数,即“9999999”七个9是没办法用8个bit位表示的,我猜测会失去精度变成2.0f,但是调用Float.toHexString发现是0x1.fffffep0,fffffe怎么看都不可能是9999999。于是我换了个数1.5f,16进制浮点数表示为0x1.8p0,可以看到小数点后是8,16进制的一半。这样看的话,上面的小数部分十进制显示是:fffffe/2^23 = 0.9999999,加上小数点前的1就是1.9999999了。
    根据这个思路可以推算出规则浮点数最小1.0*2^(-126),最大(1 + (2^23 - 1)/2^23)*2^(127)
    展开

    作者回复: 愤怒的虾干同学你好,

    toHexString表示的是把10进制转换成16进制表示。

    0.9999999的小数部分转换成16进制,采用的是 乘以2 然后如果大于1去减1这样的操作过程。你试一下就知道就会是1111111...因为一共有23位长,所以最后有一位可能是0,所以就是 fffffe,就是表示0.999999

    以1.5f为例,小数部分是0.5
    乘以2就是1.0,减1就是0
    那么0.5表示成2进制就是 0.1000000
    4位表示1个16进制数第一位就是8,后面都是0会截断显示。

    你可以照着接下来第16讲的转换过程试一下,看看小数部分会变成什么样子。

    然后把二进制转换成16进制,就能知道为什么了。

  • 任雪龙
    2019-05-29
    1
    老师,感觉今天这个讲的太粗糙了,很多东西都是用结果解释结果,比如对 0.5 这个数 s 、e、f 的值,值是从哪里推导得来的都没有解释,希望可以详细解释下
    展开

    作者回复: 任雪龙同学你好,

    这个在第16讲里面会讲解一下计算过程,因为一讲的篇幅有限,所以没有放在15讲里面讲完。

  • humor
    2019-05-29
    1
    如果7位表示0-99的话,32位的取值范围是0-9999999.99。如果需要负数,第一位表示符号位,取值范围是-7999999.99-7999999.99

    作者回复: 👍

  • 曾轼麟
    2019-06-03
    老师希望您可以讲一下有关高位int32转低位bit8中溢出的过程
    展开
  • Ant
    2019-05-29
    打卡
    展开
  • 徐小晋
    2019-05-29
    老师你好,我想请教一下。如何判断是否溢出。例如无符号八位十进制数185-122。这个是否溢出?以及如何去判断?
  • Only now
    2019-05-29
    IEEE754?
    展开

    作者回复: 对,整个是浮点数的标准
    https://zh.wikipedia.org/zh-hans/IEEE_754

  • 活的潇洒
    2019-05-29
    “算出来的结果居然不是准确的 0.9,而是 0.8999999999999999”
    经实际在python控制台和浏览器测试确实如此,实战笔记:
    https://www.cnblogs.com/luoahong/p/10942468.html
    展开
  • 鱼向北游
    2019-05-29
    老师可以扩展讲一下 移码 毕竟阶码部分并不是我们常见的原码或者补码 也不是移码的常见表示 还有非规格化表示法的由来

    作者回复: 这个想法不错,我看是否搞一章加餐

  • 古夜
    2019-05-29
    对于那个公式,底数怎么表示?32位都给了符号位,指数位,小数位,底数怎么办?

    作者回复: 底数就是 1.小数位,也就是1.f。因为是二进制,所以底数的“整数”部分可以认为必然是1啊,不存在其他情况

  • lzhao
    2019-05-29
    在这样的浮点数表示下,不考虑符号的话,浮点数能够表示的最小的数和最大的数,差不多是 1.17×10−381.17×10−38 和 3.40×10383.40×1038。比前面的 BCD 编码能够表示的范围大多了


    这个范围怎么得来的
    展开

    作者回复: 最大的数,会是小数位全部为1,指数位二进制表示成127

    表示成二进制就是 1.11111... ^(2^127)
    差不多就是1.9999999 ^(2^127)
    差不多正好是 3.4028235 x (10 ^ 38)

    最小的数就是 1.000..... ^ (2^-126)
    差不多就是 1.0000 ^ (2^-126)
    差不多正好就是 1.17549435 x (10^-38)

收藏