时长17:43大小16.24M
上一章,我们解析了文件系统,最后讲文件系统读写的流程到达底层的时候,没有更深入地分析下去,这是因为文件系统再往下就是硬盘设备了。上两节,我们解析了字符设备的 mknod、打开和读写流程。那这一节我们就来讲块设备的 mknod、打开流程,以及文件系统和下层的硬盘设备的读写流程。
块设备一般会被格式化为文件系统,但是,下面的讲述中,你可能会有一点困惑。你会看到各种各样的 dentry 和 inode。块设备涉及三种文件系统,所以你看到的这些 dentry 和 inode 可能都不是一回事儿,请注意分辨。
块设备需要 mknod 吗?对于启动盘,你可能觉得,启动了就在那里了。可是如果我们要插进一块新的 USB 盘,还是要有这个操作的。
mknod 还是会创建在 /dev 路径下面,这一点和字符设备一样。/dev 路径下面是 devtmpfs 文件系统。这是块设备遇到的第一个文件系统。我们会为这个块设备文件,分配一个特殊的 inode,这一点和字符设备也是一样的。只不过字符设备走 S_ISCHR 这个分支,对应 inode 的 file_operations 是 def_chr_fops;而块设备走 S_ISBLK 这个分支,对应的 inode 的 file_operations 是 def_blk_fops。这里要注意,inode 里面的 i_rdev 被设置成了块设备的设备号 dev_t,这个我们后面会用到,你先记住有这么一回事儿。
void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) { inode->i_mode = mode; if (S_ISCHR(mode)) { inode->i_fop = &def_chr_fops; inode->i_rdev = rdev; } else if (S_ISBLK(mode)) { inode->i_fop = &def_blk_fops; inode->i_rdev = rdev; } else if (S_ISFIFO(mode)) inode->i_fop = &pipefifo_fops; else if (S_ISSOCK(mode)) ; /* leave it no_open_fops */ }复制代码
特殊 inode 的默认 file_operations 是 def_blk_fops,就像字符设备一样,有打开、读写这个块设备文件,但是我们常规操作不会这样做。我们会将这个块设备文件 mount 到一个文件夹下面。
const struct file_operations def_blk_fops = { .open = blkdev_open, .release = blkdev_close, .llseek = block_llseek, .read_iter = blkdev_read_iter, .write_iter = blkdev_write_iter, .mmap = generic_file_mmap, .fsync = blkdev_fsync, .unlocked_ioctl = block_ioctl, .splice_read = generic_file_splice_read, .splice_write = iter_file_splice_write, .fallocate = blkdev_fallocate, };复制代码
不过,这里我们还是简单看一下,打开这个块设备的操作 blkdev_open。它里面调用的是 blkdev_get 打开这个块设备,了解到这一点就可以了。
接下来,我们要调用 mount,将这个块设备文件挂载到一个文件夹下面。如果这个块设备原来被格式化为一种文件系统的格式,例如 ext4,那我们调用的就是 ext4 相应的 mount 操作。这是块设备遇到的第二个文件系统,也是向这个块设备读写文件,需要基于的主流文件系统。咱们在文件系统那一节解析的对于文件的读写流程,都是基于这个文件系统的。
还记得,咱们注册 ext4 文件系统的时候,有下面这样的结构:
static struct file_system_type ext4_fs_type = { .owner = THIS_MODULE, .name = "ext4", .mount = ext4_mount, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, };复制代码
在将一个硬盘的块设备 mount 成为 ext4 的时候,我们会调用 ext4_mount->mount_bdev。
static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); } struct dentry *mount_bdev(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, int (*fill_super)(struct super_block *, void *, int)) { struct block_device *bdev; struct super_block *s; fmode_t mode = FMODE_READ | FMODE_EXCL; int error = 0; if (!(flags & MS_RDONLY)) mode |= FMODE_WRITE; bdev = blkdev_get_by_path(dev_name, mode, fs_type); ...... s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC, bdev); ...... return dget(s->s_root); ...... }复制代码
mount_bdev 主要做了两件大事情。第一,blkdev_get_by_path 根据 /dev/xxx 这个名字,找到相应的设备并打开它;第二,sget 根据打开的设备文件,填充 ext4 文件系统的 super_block,从而以此为基础,建立一整套咱们在文件系统那一章讲的体系。
一旦这套体系建立起来以后,对于文件的读写都是通过 ext4 文件系统这个体系进行的,创建的 inode 结构也是指向 ext4 文件系统的。文件系统那一章我们只解析了这部分,由于没有到达底层,也就没有关注块设备相关的操作。这一章我们重新回过头来,一方面看 mount 的时候,对于块设备都做了哪些操作,另一方面看读写的时候,到了底层,对于块设备做了哪些操作。
这里我们先来看 mount_bdev 做的第一件大事情,通过 blkdev_get_by_path,根据设备名 /dev/xxx,得到 struct block_device *bdev。
/** * blkdev_get_by_path - open a block device by name * @path: path to the block device to open * @mode: FMODE_* mask * @holder: exclusive holder identifier * * Open the blockdevice described by the device file at @path. @mode * and @holder are identical to blkdev_get(). * * On success, the returned block_device has reference count of one. */ struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, void *holder) { struct block_device *bdev; int err; bdev = lookup_bdev(path); ...... err = blkdev_get(bdev, mode, holder); ...... return bdev; }复制代码
blkdev_get_by_path 干了两件事情。第一个,lookup_bdev 根据设备路径 /dev/xxx 得到 block_device。第二个,打开这个设备,调用 blkdev_get。
咱们上面分析过 def_blk_fops 的默认打开设备函数 blkdev_open,它也是调用 blkdev_get 的。块设备的打开往往不是直接调用设备文件的打开函数,而是调用 mount 来打开的。
/** * lookup_bdev - lookup a struct block_device by name * @pathname: special file representing the block device * * Get a reference to the blockdevice at @pathname in the current * namespace if possible and return it. Return ERR_PTR(error) * otherwise. */ struct block_device *lookup_bdev(const char *pathname) { struct block_device *bdev; struct inode *inode; struct path path; int error; if (!pathname || !*pathname) return ERR_PTR(-EINVAL); error = kern_path(pathname, LOOKUP_FOLLOW, &path); if (error) return ERR_PTR(error); inode = d_backing_inode(path.dentry); ...... bdev = bd_acquire(inode); ...... goto out; }复制代码
lookup_bdev 这里的 pathname 是设备的文件名,例如 /dev/xxx。这个文件是在 devtmpfs 文件系统中的,kern_path 可以在这个文件系统里面,一直找到它对应的 dentry。接下来,d_backing_inode 会获得 inode。这个 inode 就是那个 init_special_inode 生成的特殊 inode。
接下来,bd_acquire 通过这个特殊的 inode,找到 struct block_device。
static struct block_device *bd_acquire(struct inode *inode) { struct block_device *bdev; ...... bdev = bdget(inode->i_rdev); if (bdev) { spin_lock(&bdev_lock); if (!inode->i_bdev) { /* * We take an additional reference to bd_inode, * and it's released in clear_inode() of inode. * So, we can access it via ->i_mapping always * without igrab(). */ bdgrab(bdev); inode->i_bdev = bdev; inode->i_mapping = bdev->bd_inode->i_mapping; } } return bdev; }复制代码
bd_acquire 中最主要的就是调用 bdget,它的参数是特殊 inode 的 i_rdev。这里面在 mknod 的时候,放的是设备号 dev_t。
struct block_device *bdget(dev_t dev) { struct block_device *bdev; struct inode *inode; inode = iget5_locked(blockdev_superblock, hash(dev), bdev_test, bdev_set, &dev); bdev = &BDEV_I(inode)->bdev; if (inode->i_state & I_NEW) { bdev->bd_contains = NULL; bdev->bd_super = NULL; bdev->bd_inode = inode; bdev->bd_block_size = i_blocksize(inode); bdev->bd_part_count = 0; bdev->bd_invalidated = 0; inode->i_mode = S_IFBLK; inode->i_rdev = dev; inode->i_bdev = bdev; inode->i_data.a_ops = &def_blk_aops; mapping_set_gfp_mask(&inode->i_data, GFP_USER); spin_lock(&bdev_lock); list_add(&bdev->bd_list, &all_bdevs); spin_unlock(&bdev_lock); unlock_new_inode(inode); } return bdev; }复制代码
在 bdget 中,我们遇到了第三个文件系统,bdev 伪文件系统。bdget 函数根据传进来的 dev_t,在 blockdev_superblock 这个文件系统里面找到 inode。这里注意,这个 inode 已经不是 devtmpfs 文件系统的 inode 了。blockdev_superblock 的初始化在整个系统初始化的时候,会调用 bdev_cache_init 进行初始化。它的定义如下:
struct super_block *blockdev_superblock __read_mostly; static struct file_system_type bd_type = { .name = "bdev", .mount = bd_mount, .kill_sb = kill_anon_super, }; void __init bdev_cache_init(void) { int err; static struct vfsmount *bd_mnt; bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), init_once); err = register_filesystem(&bd_type); if (err) panic("Cannot register bdev pseudo-fs"); bd_mnt = kern_mount(&bd_type); if (IS_ERR(bd_mnt)) panic("Cannot create bdev pseudo-fs"); blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ }复制代码
所有表示块设备的 inode 都保存在伪文件系统 bdev 中,这些对用户层不可见,主要为了方便块设备的管理。Linux 将块设备的 block_device 和 bdev 文件系统的块设备的 inode,通过 struct bdev_inode 进行关联。所以,在 bdget 中,BDEV_I 就是通过 bdev 文件系统的 inode,获得整个 struct bdev_inode 结构的地址,然后取成员 bdev,得到 block_device。
struct bdev_inode { struct block_device bdev; struct inode vfs_inode; };复制代码
绕了一大圈,我们终于通过设备文件 /dev/xxx,获得了设备的结构 block_device。有点儿绕,我们再捋一下。设备文件 /dev/xxx 在 devtmpfs 文件系统中,找到 devtmpfs 文件系统中的 inode,里面有 dev_t。我们可以通过 dev_t,在伪文件系统 bdev 中找到对应的 inode,然后根据 struct bdev_inode 找到关联的 block_device。
接下来,blkdev_get_by_path 开始做第二件事情,在找到 block_device 之后,要调用 blkdev_get 打开这个设备。blkdev_get 会调用 __blkdev_get。
在分析打开一个设备之前,我们先来看 block_device 这个结构是什么样的。
struct block_device { dev_t bd_dev; /* not a kdev_t - it's a search key */ int bd_openers; struct super_block * bd_super; ...... struct block_device * bd_contains; unsigned bd_block_size; struct hd_struct * bd_part; unsigned bd_part_count; int bd_invalidated; struct gendisk * bd_disk; struct request_queue * bd_queue; struct backing_dev_info *bd_bdi; struct list_head bd_list; ...... } ;复制代码
你应该能发现,这个结构和其他几个结构有着千丝万缕的联系,比较复杂。这是因为块设备本身就比较复杂。
比方说,我们有一个磁盘 /dev/sda,我们既可以把它整个格式化成一个文件系统,也可以把它分成多个分区 /dev/sda1、 /dev/sda2,然后把每个分区格式化成不同的文件系统。如果我们访问某个分区的设备文件 /dev/sda2,我们应该能知道它是哪个磁盘设备的。按说它们的驱动应该是一样的。如果我们访问整个磁盘的设备文件 /dev/sda,我们也应该能知道它分了几个区域,所以就有了下图这个复杂的关系结构。
struct gendisk 是用来描述整个设备的,因而上面的例子中,gendisk 只有一个实例,指向 /dev/sda。它的定义如下:
struct gendisk { int major; /* major number of driver */ int first_minor; int minors; /* maximum number of minors, =1 for disks that can't be partitioned. */ char disk_name[DISK_NAME_LEN]; /* name of major driver */ char *(*devnode)(struct gendisk *gd, umode_t *mode); ...... struct disk_part_tbl __rcu *part_tbl; struct hd_struct part0; const struct block_device_operations *fops; struct request_queue *queue; void *private_data; int flags; struct kobject *slave_dir; ...... };复制代码
这里 major 是主设备号,first_minor 表示第一个分区的从设备号,minors 表示分区的数目。
disk_name 给出了磁盘块设备的名称。
struct disk_part_tbl 结构里是一个 struct hd_struct 的数组,用于表示各个分区。struct block_device_operations fops 指向对于这个块设备的各种操作。struct request_queue queue 是表示在这个块设备上的请求队列。
struct hd_struct 是用来表示某个分区的,在上面的例子中,有两个 hd_struct 的实例,分别指向 /dev/sda1、 /dev/sda2。它的定义如下:
struct hd_struct { sector_t start_sect; sector_t nr_sects; ...... struct device __dev; struct kobject *holder_dir; int policy, partno; struct partition_meta_info *info; ...... struct disk_stats dkstats; struct percpu_ref ref; struct rcu_head rcu_head; };复制代码
在 hd_struct 中,比较重要的成员变量保存了如下的信息:从磁盘的哪个扇区开始,到哪个扇区结束。
而 block_device 既可以表示整个块设备,也可以表示某个分区,所以对于上面的例子,block_device 有三个实例,分别指向 /dev/sda1、/dev/sda2、/dev/sda。
block_device 的成员变量 bd_disk,指向的 gendisk 就是整个块设备。这三个实例都指向同一个 gendisk。bd_part 指向的某个分区的 hd_struct,bd_contains 指向的是整个块设备的 block_device。
了解了这些复杂的关系,我们再来看打开设备文件的代码,就会清晰很多。
static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) { struct gendisk *disk; struct module *owner; int ret; int partno; int perm = 0; if (mode & FMODE_READ) perm |= MAY_READ; if (mode & FMODE_WRITE) perm |= MAY_WRITE; ...... disk = get_gendisk(bdev->bd_dev, &partno); ...... owner = disk->fops->owner; ...... if (!bdev->bd_openers) { bdev->bd_disk = disk; bdev->bd_queue = disk->queue; bdev->bd_contains = bdev; if (!partno) { ret = -ENXIO; bdev->bd_part = disk_get_part(disk, partno); ...... if (disk->fops->open) { ret = disk->fops->open(bdev, mode); ...... } if (!ret) bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); if (bdev->bd_invalidated) { if (!ret) rescan_partitions(disk, bdev); ...... } ...... } else { struct block_device *whole; whole = bdget_disk(disk, 0); ...... ret = __blkdev_get(whole, mode, 1); ...... bdev->bd_contains = whole; bdev->bd_part = disk_get_part(disk, partno); ...... bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); } } ...... bdev->bd_openers++; if (for_part) bdev->bd_part_count++; ..... }复制代码
在 __blkdev_get 函数中,我们先调用 get_gendisk,根据 block_device 获取 gendisk。具体代码如下:
/** * get_gendisk - get partitioning information for a given device * @devt: device to get partitioning information for * @partno: returned partition index * * This function gets the structure containing partitioning * information for the given device @devt. */ struct gendisk *get_gendisk(dev_t devt, int *partno) { struct gendisk *disk = NULL; if (MAJOR(devt) != BLOCK_EXT_MAJOR) { struct kobject *kobj; kobj = kobj_lookup(bdev_map, devt, partno); if (kobj) disk = dev_to_disk(kobj_to_dev(kobj)); } else { struct hd_struct *part; part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); if (part && get_disk(part_to_disk(part))) { *partno = part->partno; disk = part_to_disk(part); } } return disk; }复制代码
我们可以想象这里面有两种情况。第一种情况是,block_device 是指向整个磁盘设备的。这个时候,我们只需要根据 dev_t,在 bdev_map 中将对应的 gendisk 拿出来就好。
bdev_map 是干什么的呢?前面咱们学习字符设备驱动的时候讲过,任何一个字符设备初始化的时候,都需要调用 __register_chrdev_region,注册这个字符设备。对于块设备也是类似的,每一个块设备驱动初始化的时候,都会调用 add_disk 注册一个 gendisk。
这里需要说明一下,gen 的意思是 general 通用的意思,也就是说,所有的块设备,不仅仅是硬盘 disk,都会用一个 gendisk 来表示,然后通过调用链 add_disk->device_add_disk->blk_register_region,将 dev_t 和一个 gendisk 关联起来,保存在 bdev_map 中。
static struct kobj_map *bdev_map; static inline void add_disk(struct gendisk *disk) { device_add_disk(NULL, disk); } /** * device_add_disk - add partitioning information to kernel list * @parent: parent device for the disk * @disk: per-device partitioning information * * This function registers the partitioning information in @disk * with the kernel. */ void device_add_disk(struct device *parent, struct gendisk *disk) { ...... blk_register_region(disk_devt(disk), disk->minors, NULL, exact_match, exact_lock, disk); ..... } /* * Register device numbers dev..(dev+range-1) * range must be nonzero * The hash chain is sorted on range, so that subranges can override. */ void blk_register_region(dev_t devt, unsigned long range, struct module *module, struct kobject *(*probe)(dev_t, int *, void *), int (*lock)(dev_t, void *), void *data) { kobj_map(bdev_map, devt, range, module, probe, lock, data); }复制代码
get_gendisk 要处理的第二种情况是,block_device 是指向某个分区的。这个时候我们要先得到 hd_struct,然后通过 hd_struct,找到对应的整个设备的 gendisk,并且把 partno 设置为分区号。
我们再回到 __blkdev_get 函数中,得到 gendisk。接下来我们可以分两种情况。
如果 partno 为 0,也就是说,打开的是整个设备而不是分区,那我们就调用 disk_get_part,获取 gendisk 中的分区数组,然后调用 block_device_operations 里面的 open 函数打开设备。
如果 partno 不为 0,也就是说打开的是分区,那我们就获取整个设备的 block_device,赋值给变量 struct block_device *whole,然后调用递归 __blkdev_get,打开 whole 代表的整个设备,将 bd_contains 设置为变量 whole。
block_device_operations 就是在驱动层了。例如在 drivers/scsi/sd.c 里面,也就是 MODULE_DESCRIPTION(“SCSI disk (sd) driver”) 中,就有这样的定义。
static const struct block_device_operations sd_fops = { .owner = THIS_MODULE, .open = sd_open, .release = sd_release, .ioctl = sd_ioctl, .getgeo = sd_getgeo, #ifdef CONFIG_COMPAT .compat_ioctl = sd_compat_ioctl, #endif .check_events = sd_check_events, .revalidate_disk = sd_revalidate_disk, .unlock_native_capacity = sd_unlock_native_capacity, .pr_ops = &sd_pr_ops, }; /** * sd_open - open a scsi disk device * @bdev: Block device of the scsi disk to open * @mode: FMODE_* mask * * Returns 0 if successful. Returns a negated errno value in case * of error. **/ static int sd_open(struct block_device *bdev, fmode_t mode) { ...... }复制代码
在驱动层打开了磁盘设备之后,我们可以看到,在这个过程中,block_device 相应的成员变量该填的都填上了,这才完成了 mount_bdev 的第一件大事,通过 blkdev_get_by_path 得到 block_device。
接下来就是第二件大事情,我们要通过 sget,将 block_device 塞进 superblock 里面。注意,调用 sget 的时候,有一个参数是一个函数 set_bdev_super。这里面将 block_device 设置进了 super_block。而 sget 要做的,就是分配一个 super_block,然后调用 set_bdev_super 这个 callback 函数。这里的 super_block 是 ext4 文件系统的 super_block。
sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC, bdev);
static int set_bdev_super(struct super_block *s, void *data) { s->s_bdev = data; s->s_dev = s->s_bdev->bd_dev; s->s_bdi = bdi_get(s->s_bdev->bd_bdi); return 0; } /** * sget - find or create a superblock * @type: filesystem type superblock should belong to * @test: comparison callback * @set: setup callback * @flags: mount flags * @data: argument to each of them */ struct super_block *sget(struct file_system_type *type, int (*test)(struct super_block *,void *), int (*set)(struct super_block *,void *), int flags, void *data) { ...... return sget_userns(type, test, set, flags, user_ns, data); } /** * sget_userns - find or create a superblock * @type: filesystem type superblock should belong to * @test: comparison callback * @set: setup callback * @flags: mount flags * @user_ns: User namespace for the super_block * @data: argument to each of them */ struct super_block *sget_userns(struct file_system_type *type, int (*test)(struct super_block *,void *), int (*set)(struct super_block *,void *), int flags, struct user_namespace *user_ns, void *data) { struct super_block *s = NULL; struct super_block *old; int err; ...... if (!s) { s = alloc_super(type, (flags & ~MS_SUBMOUNT), user_ns); ...... } err = set(s, data); ...... s->s_type = type; strlcpy(s->s_id, type->name, sizeof(s->s_id)); list_add_tail(&s->s_list, &super_blocks); hlist_add_head(&s->s_instances, &type->fs_supers); spin_unlock(&sb_lock); get_filesystem(type); register_shrinker(&s->s_shrink); return s; }复制代码
好了,到此为止,mount 中一个块设备的过程就结束了。设备打开了,形成了 block_device 结构,并且塞到了 super_block 中。
有了 ext4 文件系统的 super_block 之后,接下来对于文件的读写过程,就和文件系统那一章的过程一摸一样了。只要不涉及真正写入设备的代码,super_block 中的这个 block_device 就没啥用处。这也是为什么文件系统那一章,我们丝毫感觉不到它的存在,但是一旦到了底层,就到了 block_device 起作用的时候了,这个我们下一节仔细分析。
从这一节我们可以看出,块设备比字符设备复杂多了,涉及三个文件系统,工作过程我用一张图总结了一下,下面带你总结一下。
到这里,你是否真的体会到了 Linux 里面“一切皆文件”了呢?那个特殊的 inode 除了能够表示字符设备和块设备,还能表示什么呢?请你看代码分析一下。
欢迎留言和我分享你的疑惑和见解 ,也欢迎可以收藏本节内容,反复研读。你也可以把今天的内容分享给你的朋友,和他一起学习和进步。