下载APP
关闭
讲堂
客户端下载
兑换中心
企业版
渠道合作
推荐作者

28 | 堆和堆排序:为什么说堆排序没有快速排序快?

2018-11-26 王争
数据结构与算法之美
进入课程

讲述:修阳

时长15:34大小7.14M

我们今天讲另外一种特殊的树,“堆”(Heap)。堆这种数据结构的应用场景非常多,最经典的莫过于堆排序了。堆排序是一种原地的、时间复杂度为 O(nlogn) 的排序算法。

前面我们学过快速排序,平均情况下,它的时间复杂度为 O(nlogn)。尽管这两种排序算法的时间复杂度都是 O(nlogn),甚至堆排序比快速排序的时间复杂度还要稳定,但是,在实际的软件开发中,快速排序的性能要比堆排序好,这是为什么呢?

现在,你可能还无法回答,甚至对问题本身还有点疑惑。没关系,带着这个问题,我们来学习今天的内容。等你学完之后,或许就能回答出来了。

如何理解“堆”?

前面我们提到,堆是一种特殊的树。我们现在就来看看,什么样的树才是堆。我罗列了两点要求,只要满足这两点,它就是一个堆。

  • 堆是一个完全二叉树;

  • 堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。

我分别解释一下这两点。

第一点,堆必须是一个完全二叉树。还记得我们之前讲的完全二叉树的定义吗?完全二叉树要求,除了最后一层,其他层的节点个数都是满的,最后一层的节点都靠左排列。

第二点,堆中的每个节点的值必须大于等于(或者小于等于)其子树中每个节点的值。实际上,我们还可以换一种说法,堆中每个节点的值都大于等于(或者小于等于)其左右子节点的值。这两种表述是等价的。

对于每个节点的值都大于等于子树中每个节点值的堆,我们叫作“大顶堆”。对于每个节点的值都小于等于子树中每个节点值的堆,我们叫作“小顶堆”。

定义解释清楚了,你来看看,下面这几个二叉树是不是堆?

其中第 1 个和第 2 个是大顶堆,第 3 个是小顶堆,第 4 个不是堆。除此之外,从图中还可以看出来,对于同一组数据,我们可以构建多种不同形态的堆。

如何实现一个堆?

要实现一个堆,我们先要知道,堆都支持哪些操作以及如何存储一个堆

我之前讲过,完全二叉树比较适合用数组来存储。用数组来存储完全二叉树是非常节省存储空间的。因为我们不需要存储左右子节点的指针,单纯地通过数组的下标,就可以找到一个节点的左右子节点和父节点。

我画了一个用数组存储堆的例子,你可以先看下。

从图中我们可以看到,数组中下标为 i 的节点的左子节点,就是下标为 i2 的节点,右子节点就是下标为 i2+1 的节点,父节点就是下标为 i2 的节点。

知道了如何存储一个堆,那我们再来看看,堆上的操作有哪些呢?我罗列了几个非常核心的操作,分别是往堆中插入一个元素和删除堆顶元素。(如果没有特殊说明,我下面都是拿大顶堆来讲解)。

1. 往堆中插入一个元素

往堆中插入一个元素后,我们需要继续满足堆的两个特性。

如果我们把新插入的元素放到堆的最后,你可以看我画的这个图,是不是不符合堆的特性了?于是,我们就需要进行调整,让其重新满足堆的特性,这个过程我们起了一个名字,就叫作堆化(heapify)。

堆化实际上有两种,从下往上和从上往下。这里我先讲从下往上的堆化方法。

堆化非常简单,就是顺着节点所在的路径,向上或者向下,对比,然后交换。

我这里画了一张堆化的过程分解图。我们可以让新插入的节点与父节点对比大小。如果不满足子节点小于等于父节点的大小关系,我们就互换两个节点。一直重复这个过程,直到父子节点之间满足刚说的那种大小关系。

我将上面讲的往堆中插入数据的过程,翻译成了代码,你可以结合着一块看。

public class Heap {
private int[] a; // 数组,从下标 1 开始存储数据
private int n; // 堆可以存储的最大数据个数
private int count; // 堆中已经存储的数据个数
public Heap(int capacity) {
a = new int[capacity + 1];
n = capacity;
count = 0;
}
public void insert(int data) {
if (count >= n) return; // 堆满了
++count;
a[count] = data;
int i = count;
while (i/2 > 0 && a[i] > a[i/2]) { // 自下往上堆化
swap(a, i, i/2); // swap() 函数作用:交换下标为 i 和 i/2 的两个元素
i = i/2;
}
}
}
复制代码

2. 删除堆顶元素

从堆的定义的第二条中,任何节点的值都大于等于(或小于等于)子树节点的值,我们可以发现,堆顶元素存储的就是堆中数据的最大值或者最小值。

假设我们构造的是大顶堆,堆顶元素就是最大的元素。当我们删除堆顶元素之后,就需要把第二大的元素放到堆顶,那第二大元素肯定会出现在左右子节点中。然后我们再迭代地删除第二大节点,以此类推,直到叶子节点被删除。

这里我也画了一个分解图。不过这种方法有点问题,就是最后堆化出来的堆并不满足完全二叉树的特性。

实际上,我们稍微改变一下思路,就可以解决这个问题。你看我画的下面这幅图。我们把最后一个节点放到堆顶,然后利用同样的父子节点对比方法。对于不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止。这就是从上往下的堆化方法

因为我们移除的是数组中的最后一个元素,而在堆化的过程中,都是交换操作,不会出现数组中的“空洞”,所以这种方法堆化之后的结果,肯定满足完全二叉树的特性。

我把上面的删除过程同样也翻译成了代码,贴在这里,你可以结合着看。

public void removeMax() {
if (count == 0) return -1; // 堆中没有数据
a[1] = a[count];
--count;
heapify(a, count, 1);
}
private void heapify(int[] a, int n, int i) { // 自上往下堆化
while (true) {
int maxPos = i;
if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
if (maxPos == i) break;
swap(a, i, maxPos);
i = maxPos;
}
}
复制代码

我们知道,一个包含 n 个节点的完全二叉树,树的高度不会超过 log2n。堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是 O(logn)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素和删除堆顶元素的时间复杂度都是 O(logn)

如何基于堆实现排序?

前面我们讲过好几种排序算法,我们再来回忆一下,有时间复杂度是 O(n2) 的冒泡排序、插入排序、选择排序,有时间复杂度是 O(nlogn) 的归并排序、快速排序,还有线性排序。

这里我们借助于堆这种数据结构实现的排序算法,就叫作堆排序。这种排序方法的时间复杂度非常稳定,是 O(nlogn),并且它还是原地排序算法。如此优秀,它是怎么做到的呢?

我们可以把堆排序的过程大致分解成两个大的步骤,建堆排序

1. 建堆

我们首先将数组原地建成一个堆。所谓“原地”就是,不借助另一个数组,就在原数组上操作。建堆的过程,有两种思路。

第一种是借助我们前面讲的,在堆中插入一个元素的思路。尽管数组中包含 n 个数据,但是我们可以假设,起初堆中只包含一个数据,就是下标为 1 的数据。然后,我们调用前面讲的插入操作,将下标从 2n 的数据依次插入到堆中。这样我们就将包含 n 个数据的数组,组织成了堆。

第二种实现思路,跟第一种截然相反,也是我这里要详细讲的。第一种建堆思路的处理过程是从前往后处理数组数据,并且每个数据插入堆中时,都是从下往上堆化。而第二种实现思路,是从后往前处理数组,并且每个数据都是从上往下堆化。

我举了一个例子,并且画了一个第二种实现思路的建堆分解步骤图,你可以看下。因为叶子节点往下堆化只能自己跟自己比较,所以我们直接从第一个非叶子节点开始,依次堆化就行了。

对于程序员来说,看代码可能更好理解一些,所以,我将第二种实现思路翻译成了代码,你可以看下。

private static void buildHeap(int[] a, int n) {
for (int i = n/2; i >= 1; --i) {
heapify(a, n, i);
}
}
private static void heapify(int[] a, int n, int i) {
while (true) {
int maxPos = i;
if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
if (maxPos == i) break;
swap(a, i, maxPos);
i = maxPos;
}
}
复制代码

你可能已经发现了,在这段代码中,我们对下标从 n2 开始到 1 的数据进行堆化,下标是 n2+1n 的节点是叶子节点,我们不需要堆化。实际上,对于完全二叉树来说,下标从 n2+1n 的节点都是叶子节点。

现在,我们来看,建堆操作的时间复杂度是多少呢?

每个节点堆化的时间复杂度是 O(logn),那 n2+1 个节点堆化的总时间复杂度是不是就是 O(nlogn) 呢?这个答案虽然也没错,但是这个值还是不够精确。实际上,堆排序的建堆过程的时间复杂度是 O(n)。我带你推导一下。

因为叶子节点不需要堆化,所以需要堆化的节点从倒数第二层开始。每个节点堆化的过程中,需要比较和交换的节点个数,跟这个节点的高度 k 成正比。

我把每一层的节点个数和对应的高度画了出来,你可以看看。我们只需要将每个节点的高度求和,得出的就是建堆的时间复杂度。

我们将每个非叶子节点的高度求和,就是下面这个公式:

这个公式的求解稍微有点技巧,不过我们高中应该都学过:把公式左右都乘以 2,就得到另一个公式 S2。我们将 S2 错位对齐,并且用 S2 减去 S1,可以得到 S

S 的中间部分是一个等比数列,所以最后可以用等比数列的求和公式来计算,最终的结果就是下面图中画的这个样子。

因为 h=log2n,代入公式 S,就能得到 S=O(n),所以,建堆的时间复杂度就是 O(n)

2. 排序

建堆结束之后,数组中的数据已经是按照大顶堆的特性来组织的。数组中的第一个元素就是堆顶,也就是最大的元素。我们把它跟最后一个元素交换,那最大元素就放到了下标为 n 的位置。

这个过程有点类似上面讲的“删除堆顶元素”的操作,当堆顶元素移除之后,我们把下标为 n 的元素放到堆顶,然后再通过堆化的方法,将剩下的 n1 个元素重新构建成堆。堆化完成之后,我们再取堆顶的元素,放到下标是 n1 的位置,一直重复这个过程,直到最后堆中只剩下标为 1 的一个元素,排序工作就完成了。

堆排序的过程,我也翻译成了代码。结合着代码看,你理解起来应该会更加容易。

// n 表示数据的个数,数组 a 中的数据从下标 1 到 n 的位置。
public static void sort(int[] a, int n) {
buildHeap(a, n);
int k = n;
while (k > 1) {
swap(a, 1, k);
--k;
heapify(a, k, 1);
}
}
复制代码

现在,我们再来分析一下堆排序的时间复杂度、空间复杂度以及稳定性。

整个堆排序的过程,都只需要极个别临时存储空间,所以堆排序是原地排序算法。堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是 O(n),排序过程的时间复杂度是 O(nlogn),所以,堆排序整体的时间复杂度是 O(nlogn)

堆排序不是稳定的排序算法,因为在排序的过程,存在将堆的最后一个节点跟堆顶节点互换的操作,所以就有可能改变值相同数据的原始相对顺序。

今天的内容到此就讲完了。我这里要稍微解释一下,在前面的讲解以及代码中,我都假设,堆中的数据是从数组下标为 1 的位置开始存储。那如果从 0 开始存储,实际上处理思路是没有任何变化的,唯一变化的,可能就是,代码实现的时候,计算子节点和父节点的下标的公式改变了。

如果节点的下标是 i,那左子节点的下标就是 2i+1,右子节点的下标就是 2i+2,父节点的下标就是 i12

解答开篇

现在我们来看开篇的问题,在实际开发中,为什么快速排序要比堆排序性能好?

我觉得主要有两方面的原因。

第一点,堆排序数据访问的方式没有快速排序友好。

对于快速排序来说,数据是顺序访问的。而对于堆排序来说,数据是跳着访问的。 比如,堆排序中,最重要的一个操作就是数据的堆化。比如下面这个例子,对堆顶节点进行堆化,会依次访问数组下标是 1248 的元素,而不是像快速排序那样,局部顺序访问,所以,这样对 CPU 缓存是不友好的。

第二点,对于同样的数据,在排序过程中,堆排序算法的数据交换次数要多于快速排序。

我们在讲排序的时候,提过两个概念,有序度和逆序度。对于基于比较的排序算法来说,整个排序过程就是由两个基本的操作组成的,比较和交换(或移动)。快速排序数据交换的次数不会比逆序度多。

但是堆排序的第一步是建堆,建堆的过程会打乱数据原有的相对先后顺序,导致原数据的有序度降低。比如,对于一组已经有序的数据来说,经过建堆之后,数据反而变得更无序了。

对于第二点,你可以自己做个试验看下。我们用一个记录交换次数的变量,在代码中,每次交换的时候,我们就对这个变量加一,排序完成之后,这个变量的值就是总的数据交换次数。这样你就能很直观地理解我刚刚说的,堆排序比快速排序交换次数多。

内容小结

今天我们讲了堆这种数据结构。堆是一种完全二叉树。它最大的特性是:每个节点的值都大于等于(或小于等于)其子树节点的值。因此,堆被分成了两类,大顶堆和小顶堆。

堆中比较重要的两个操作是插入一个数据和删除堆顶元素。这两个操作都要用到堆化。插入一个数据的时候,我们把新插入的数据放到数组的最后,然后从下往上堆化;删除堆顶数据的时候,我们把数组中的最后一个元素放到堆顶,然后从上往下堆化。这两个操作时间复杂度都是 O(logn)

除此之外,我们还讲了堆的一个经典应用,堆排序。堆排序包含两个过程,建堆和排序。我们将下标从 n21 的节点,依次进行从上到下的堆化操作,然后就可以将数组中的数据组织成堆这种数据结构。接下来,我们迭代地将堆顶的元素放到堆的末尾,并将堆的大小减一,然后再堆化,重复这个过程,直到堆中只剩下一个元素,整个数组中的数据就都有序排列了。

课后思考

  1. 在讲堆排序建堆的时候,我说到,对于完全二叉树来说,下标从 n2+1n 的都是叶子节点,这个结论是怎么推导出来的呢?

  2. 我们今天讲了堆的一种经典应用,堆排序。关于堆,你还能想到它的其他应用吗?

欢迎留言和我分享,我会第一时间给你反馈。

© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
上一篇
不定期福利第二期 | 王争:羁绊前行的,不是肆虐的狂风,而是内心的迷茫
下一篇
29 | 堆的应用:如何快速获取到Top 10最热门的搜索关键词?
 写留言

精选留言(95)

  • Jerry银银
    2018-11-26
    135
    ## 第一题:

    使用数组存储表示完全二叉树时,从数组下标为1开始存储数据,数组下标为i的节点,左子节点为2i, 右子节点为2i + 1. 这个结论很重要(可以用数学归纳法证明),将此结论记为『原理1』,以下证明会用到这个原理。

    为什么,对于完全二叉树来说,下标从n/2 + 1 到 n的节点都是叶子节点? 使用反证法证明即可:

    如果下标为n/2 + 1的节点不是叶子节点,即它存在子节点,按照『原理1』,它的左子节点为:2(n/2 + 1) = n + 2,大家明显可以看出,这个数字已经大于n + 1,超出了实现完全二叉树所用数组的大小(数组下标从1开始记录数据,对于n个节点来说,数组大小是n + 1),左子节点都已经超出了数组容量,更何况右子节点。以此类推,很容易得出:下标大于n/2 + 1的节点肯定都是也叶子节点了,故而得出结论:对于完全二叉树来说,下标从n/2 + 1 到 n的节点都是叶子节点

    备注下:用数组存储表示完全二叉树时,也可以从下标为0开始,只是这样做的话,计算左子节点时,会多一次加法运算

    --------------------------------------------------------
    ## 第二题:

    堆的应用除了堆排以外,还有如下一些应用:
    1. 从大数量级数据中筛选出top n 条数据; 比如:从几十亿条订单日志中筛选出金额靠前的1000条数据
    2. 在一些场景中,会根据不同优先级来处理网络请求,此时也可以用到优先队列(用堆实现的数据结构);比如:网络框架Volley就用了Java中PriorityBlockingQueue,当然它是线程安全的
    3. 可以用堆来实现多路归并,从而实现有序,leetcode上也有相关的一题:Merge K Sorted Lists

    暂时只能想到以上三种常见的应用场景,其它的,希望老师补充!
    展开
  • Jessie
    2018-12-13
    100
    强烈建议,在进入课程的左侧,做一个目录,这样就不用每次都从最新的滑到最下面了。例如:目前是学到了第35课,已进入课堂,就是35课,假如我想看第一课,就得使劲滑。如果学到100课,那得滑老半天……所以强烈建议给左侧添加一个目录。可以连接到每一节课。!!!
    展开
  • WhoAmWe
    2018-11-26
    30
    应用:
    1.topK
    2.流里面的中值
    3.流里面的中位数

    作者回复: 👍

  • 一缕青云丝
    2018-11-27
    29
    不知道有没有人很容易看懂原理思路,就是不愿意看代码
  • 无心拾贝
    2018-11-26
    20
    这TM估计是我唯一看的懂的数据结构与算法吧。 谢谢老师!
  • 猫头鹰爱拿...
    2018-11-26
    15
    思考题1:堆是完全二叉树,求最后的非叶子节点即是求最大的叶子节点的父节点。最大的叶子节点下标为n,他的父节点为n/2,这是最后一个非叶子节点,所以n/2+1到n都是叶子节点。
    思考题2:堆排序的应用-topk问题,例如求数据频率最高的k个数,建立k个数的最小顶堆,然后剩余数据和堆顶比较,如果比堆顶大则替换堆顶并重新调整最小顶堆。
    展开
  • insist
    2018-11-26
    14
    这种数据结构堆和java内存模型中的堆内存有什么关系呢?

    作者回复: 完全没关系的。

  • Smallfly
    2018-11-26
    10
    堆应该可以用于实现优先级队列。
    展开
  • 鲍勃
    2018-11-30
    7
    linux内核内存中的堆和这个有关系吗?
    展开

    作者回复: 没关系 完全是两个东西

  • .
    2018-12-14
    4
    "对堆顶节点进行堆化,会依次访问数组下标是 1,2,4,8"。这里图画错了吧,数组下标2 (20)和数组下标3(21)的位置应该是弄反了。如果按原图对堆顶元素堆化的话顺序应该是1,3,6不应该是1,2,4,8

    作者回复: 嗯嗯 多谢指正

  • 星愿
    2018-12-12
    4
    删除堆顶元素的代码第二行return -1。。
    展开
  • 李建轰
    2018-11-30
    4
    老师你好~
    heapify方法好像有点问题?
    假如第一个非叶子节点是5,左叶子节点是7,右叶子节点是6
    然后入heapify方法的这段代码
    ```
    while (true) {
        int maxPos = i;
        if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
        if (i*2+1 <= n && a[i] < a[i*2+1]) maxPos = i*2+1
        if (maxPos == i) break;
        swap(a, i, maxPos);
        i = maxPos;
    }
    ```
    就会变成第一个非叶子节点是6,左叶子节点是7,右叶子节点是5,因为swap只会执行一次。
    我觉得swap方法在前面两个if里面都得有,并且第二个if必须用if,不能用else if。
    斗胆提问,请老师答疑~
    展开
  • yaya
    2018-11-26
    4
    最后一个结点的父节点是n/2.这是最后一个非叶子结点所以,叶子结点是n/2+1到n。
    优先队列的实现用的就是堆
    展开
  • 朝夕心
    2019-02-26
    3
    思考题1证明
    结论:对于完全二叉树来说,下标从(n/2)+1到n都是叶子节点
    证明:
    假设堆有n个节点
    假设满二叉树有h层 则满二叉树的总节点数 2^0+2^1...+2^(h-2)+2^(h-1)=(2^h)-1> n n为h层完全二叉树节点数
    堆为完全二叉树,相同高度,完全二叉树总结点数小于满二叉树节点数,即n<(2^h)-1, 即(2^h)>n+1 -----①
    完全二叉树1到h-1层节点的数量总和: 2^0+2^1...+2^(h-2)=(2^(h-1))-1=(2^h)/2 -1 -----②
    如果数组的第0位也存储数据,由②可知,完全二叉树的第h层开始的节点的下标为i=(2^h)/2 -1,由①,i>((n+1)/2)-1=(n/2)+1
    结论1:如果数组的第0位也存储数据,完全二叉树的节点下标至少开始于(n/2)+1
    如果数组的第0位不存储数据,则由②可知,完全二叉树的第h层开始的节点的下标为j=(2^h)/2,由①,j>(n+1)/2=(n/2)+2
    结论2:如果数组的第0位不存储数据,完全二叉树的节点下标至少开始于(n/2)+2
    综上,堆(完全二叉树)的叶子节点的下标范围从(n/2)+1到n-1或从(n/2)+2到n,也即堆的叶子节点下标从(n/2)+1到n
    欢迎指正
    --不为别的,就为成为更合格的自己
    展开

    作者回复: 👍

  • Brandon
    2018-12-14
    3
    排序队------时间复杂度
    堆满足两条:1、完全二叉树(可以很方便的使用数组存储),2、父节点大于或小于子节点-----
    插入元素-先放入队尾,再进行堆化(heapify)
    删除元素-从最后取一个元素放到删除元素位置,从上往下调整

    快排比堆排性能好的原因有二:1、堆排序数据访问的方式有没有快速排序友好;
    2、对于同样的数据,在排序的过程中堆排序算法的交换次数多于快速排序
    展开
  • 博予liutxe...
    2018-12-09
    3
    堆排序和快速排序相比实际开发中不如后者性能好,那堆排序在哪些场景比较有优势呢?

    作者回复: 时间复杂度比较稳定 有些排序函数会使用这种排序算法

  • 小二黑
    2019-03-27
    2
    老师,请问堆化自上而下,那段代码,节点和子节点比较大小,是用if判断的吗

    作者回复: if判断是什么意思呢

  • Rephontil
    2019-01-07
    2
    这一节课看了两遍,看得清清楚楚,明明白白😊
    展开
  • Rephontil
    2019-01-05
    2
    老师,“我们将每个非叶子节点的高度求和,就是下面这个公式”,这个公式的末尾部分2^(h-1) * 1应该是不需要的吧,因为这个2^(h-1) * 1是最底层叶子节点的高度。
  • 惟新
    2019-01-04
    2
    好久没看了,又开始重新看了。另外还在线画了思维导图。
收藏