时长08:59大小4.13M
你是不是觉得数据结构和算法,跟操作系统、计算机网络一样,是脱离实际工作的知识?可能除了面试,这辈子也用不着?
尽管计算机相关专业的同学在大学都学过这门课程,甚至很多培训机构也会培训这方面的知识,但是据我了解,很多程序员对数据结构和算法依旧一窍不通。还有一些人也只听说过数组、链表、快排这些最最基本的数据结构和算法,稍微复杂一点的就完全没概念。
当然,也有很多人说,自己实际工作中根本用不到数据结构和算法。所以,就算不懂这块知识,只要 Java API、开发框架用得熟练,照样可以把代码写得“飞”起来。事实真的是这样吗?
今天我们就来详细聊一聊,为什么要学习数据结构和算法。
很多大公司,比如 BAT、Google、Facebook,面试的时候都喜欢考算法、让人现场写代码。有些人虽然技术不错,但每次去面试都会“跪”在算法上,很是可惜。那你有没有想过,为什么这些大公司都喜欢考算法呢?
校招的时候,参加面试的学生通常没有实际项目经验,公司只能考察他们的基础知识是否牢固。社招就更不用说了,越是厉害的公司,越是注重考察数据结构与算法这类基础知识。相比短期能力,他们更看中你的长期潜力。
你可能要说了,我不懂数据结构与算法,照样找到了好工作啊。那我是不是就不用学数据结构和算法呢?当然不是,你别忘了,我们学任何知识都是为了“用”的,是为了解决实际工作问题的,学习数据结构和算法自然也不例外。
如果你是一名业务开发工程师,你可能要说,我整天就是做数据库 CRUD(增删改查),哪里用得到数据结构和算法啊?
是的,对于大部分业务开发来说,我们平时可能更多的是利用已经封装好的现成的接口、类库来堆砌、翻译业务逻辑,很少需要自己实现数据结构和算法。但是,不需要自己实现,并不代表什么都不需要了解。
如果不知道这些类库背后的原理,不懂得时间、空间复杂度分析,你如何能用好、用对它们?存储某个业务数据的时候,你如何知道应该用 ArrayList,还是 Linked List 呢?调用了某个函数之后,你又该如何评估代码的性能和资源的消耗呢?
作为业务开发,我们会用到各种框架、中间件和底层系统,比如 Spring、RPC 框架、消息中间件、Redis 等等。在这些基础框架中,一般都揉和了很多基础数据结构和算法的设计思想。
比如,我们常用的 Key-Value 数据库 Redis 中,里面的有序集合是用什么数据结构来实现的呢?为什么要用跳表来实现呢?为什么不用二叉树呢?
如果你能弄明白这些底层原理,你就能更好地使用它们。即便出现问题,也很容易就能定位。因此,掌握数据结构和算法,不管对于阅读框架源码,还是理解其背后的设计思想,都是非常有用的。
在平时的工作中,数据结构和算法的应用到处可见。我来举一个你非常熟悉的例子:如何实时地统计业务接口的 99% 响应时间?
你可能最先想到,每次查询时,从小到大排序所有的响应时间,如果总共有 1200 个数据,那第 1188 个数据就是 99% 的响应时间。很显然,每次用这个方法查询的话都要排序,效率是非常低的。但是,如果你知道“堆”这个数据结构,用两个堆可以非常高效地解决这个问题。
现在互联网上的技术文章、架构分享、开源项目满天飞,照猫画虎做一套基础框架并不难。我就拿 RPC 框架举例。
不同的公司、不同的人做出的 RPC 框架,架构设计思路都差不多,最后实现的功能也都差不多。但是有的人做出来的框架,Bug 很多、性能一般、扩展性也不好,只能在自己公司仅有的几个项目里面用一下。而有的人做的框架可以开源到 GitHub 上给很多人用,甚至被 Apache 收录。为什么会有这么大的差距呢?
我觉得,高手之间的竞争其实就在细节。这些细节包括:你用的算法是不是够优化,数据存取的效率是不是够高,内存是不是够节省等等。这些累积起来,决定了一个框架是不是优秀。所以,如果你还不懂数据结构和算法,没听说过大 O 复杂度分析,不知道怎么分析代码的时间复杂度和空间复杂度,那肯定说不过去了,赶紧来补一补吧!
何为编程能力强?是代码的可读性好、健壮?还是扩展性好?我觉得没法列,也列不全。但是,在我看来,性能好坏起码是其中一个非常重要的评判标准。但是,如果你连代码的时间复杂度、空间复杂度都不知道怎么分析,怎么写出高性能的代码呢?
你可能会说,我在小公司工作,用户量很少,需要处理的数据量也很少,开发中不需要考虑那么多性能的问题,完成功能就可以,用什么数据结构和算法,差别根本不大。但是你真的想“十年如一日”地做一样的工作吗?
经常有人说,程序员 35 岁之后很容易陷入瓶颈,被行业淘汰,我觉得原因其实就在此。有的人写代码的时候,从来都不考虑非功能性的需求,只是完成功能,凑合能用就好;做事情的时候,也从来没有长远规划,只把眼前事情做好就满足了。
我曾经面试过很多大龄候选人,简历能写十几页,经历的项目有几十个,但是细看下来,每个项目都是重复地堆砌业务逻辑而已,完全没有难度递进,看不出有能力提升。久而久之,十年的积累可能跟一年的积累没有任何区别。这样的人,怎么不会被行业淘汰呢?
如果你在一家成熟的公司,或者 BAT 这样的大公司,面对的是千万级甚至亿级的用户,开发的是 TB、PB 级别数据的处理系统。性能几乎是开发过程中时刻都要考虑的问题。一个简单的 ArrayList、Linked List 的选择问题,就可能会产生成千上万倍的性能差别。这个时候,数据结构和算法的意义就完全凸显出来了。
其实,我觉得,数据结构和算法这个东西,如果你不去学,可能真的这辈子都用不到,也感受不到它的好。但是一旦掌握,你就会常常被它的强大威力所折服。之前你可能需要费很大劲儿来优化的代码,需要花很多心思来设计的架构,用了数据结构和算法之后,很容易就可以解决了。
我们学习数据结构和算法,并不是为了死记硬背几个知识点。我们的目的是建立时间复杂度、空间复杂度意识,写出高质量的代码,能够设计基础架构,提升编程技能,训练逻辑思维,积攒人生经验,以此获得工作回报,实现你的价值,完善你的人生。
所以,不管你是业务开发工程师,还是基础架构工程师;不管你是初入职场的初级工程师,还是工作多年的资深架构师,又或者是想转人工智能、区块链这些热门领域的程序员,数据结构与算法作为计算机的基础知识、核心知识,都是必须要掌握的。
掌握了数据结构与算法,你看待问题的深度,解决问题的角度就会完全不一样。因为这样的你,就像是站在巨人的肩膀上,拿着生存利器行走世界。数据结构与算法,会为你的编程之路,甚至人生之路打开一扇通往新世界的大门。
你为什么要学习数据结构和算法呢?在过去的软件开发中,数据结构和算法在哪些地方帮到了你?
欢迎留言和我分享,我会第一时间给你反馈。
作者回复: 写的很好 同学们把这条回复顶上去
作者回复: 你掌握了学这门课的最有效的方法。看十遍也没自己实现一遍学的牢。同学们这条也帮忙顶上去
作者回复: 写的太好了
作者回复: 终身学习 多大年纪也不晚
作者回复: 1. 客观的讲,有些项目确实涉及的数据结构和算法少一些,你可以再看下我文章里写的。
2. 你提到学了又忘,我觉得一方面你是没有掌握学习的方法,学习的重点,走马观花的看肯定比较容易忘;我们02节会具体讲;
3. 不会灵活应用?那估计还是没有好的教材教你如何应用,还有可能就是确实还没掌握太牢,只是懂点皮毛,很浅,灵活应用是一个比较的境界,需要一段时间的沉淀学习。
4. 学习算法并不是为了记住几个排序、二分查找、二叉树遍历,他还能锻炼你的逻辑思维、性能意识,而且,如果你写代码能力还有欠缺,你还可以通过把学到的数据结构和算法都实现一遍,这是一种很好很好的锻炼编程能力的方法。所以不要过度追求一定要在项目里手写快排、手写二叉树才能算是用上。
作者回复: 哈哈 你要是看到我讲的散列那一篇你就知道了 像java里的hashmap是比较耗内存的 你用到的解决方案是一种用时间复杂度换空间复杂度的思路 我们专栏也会讲的 不过你现在的解决办法还可以更高效 利用hash函数 我们专栏也会讲到 还有二分是logn的时间复杂度 是非常高效的一种时间复杂度 2的64次方个有序数据二分查找也顶多循环64次 有没有觉得logn这个复杂度很奇妙
作者回复: 写的很好👍
作者回复: 太形象了:)
作者回复: 十年磨一剑说的太好了。我也是这么认为的。做技术就是不要浮躁。要耐得住寂寞。沉得下心。
作者回复: 1. 假设我们现在要做这样一个功能,我们希望在app上存储一个多级地址列表,用户可以一层一层的选择地址列表中的地址,来设置自己的所在的省份、市、区,如果这个地址列表不是经常变动的,我们希望保存在app端,这样就不需要每次操作地址列表都要跟后台交互,如果让你存储这个多级地址列表,你会怎么存储呢?
2. 如果地址列表也并不是一直都不变的,如果地址列表改变了,我们又不希望发新版,那如何更新app上的地址列表呢?如果地址列表比较大,我们不希望app重新全量的从服务器再拉一次,那又如何来做呢?
3. 我会用一种语言来实现 你可以翻译成object c
作者回复: 说得好 不管哪个行业都会淘汰不求上进的人 it也不例外
作者回复: 没事的 如果工作不满意 不顺心 更要卧薪尝胆 提高能力 沉淀自己。总有一天 机会会到来 你做好充分的抓住它的准备就好。人在职场中 只要抓住一两次大的机会 就能做到很高的职位 就怕的是机会来了我们也抓不住
作者回复: 举一个例子 你写了一个接口 每天有成千上万的访问 你如何知道这个接口够不够快?响应时间是1s还是5s?如何统计度量?用平均值?显然不是太适合?那用什么值来统计度量呢?你可以自己搜索研究下
作者回复: 说的好